Box 1: Schematic flow-chart for 3D model acquisition showing light and confocal microscopy images, and 3D model of the same seven month old Coscinoderma matthewsi/juvenile

Methodology
- **Post-settlement mortality**
 Larvae were settled onto sterile 6-well plates at densities of 0.1, 0.2, 0.5 and 1 larvae cm\(^{-2}\) and maintained in an outdoor raceway with flow-through seawater. Juvenile survival was monitored monthly for seven months (n\(_{\text{larvae}}\) = 50 per treatment).

- **Post-settlement growth and accuracy of 2D measurements**
 Juvenile size (surface area, 2D) at settlement and seven months was measured under light microscopy (n = 6). Juvenile size (volumes, 3D) was also determined using computed tomography of Z slice photos from confocal microscopy (Box 1) (n = 6).

Results
- **Post-settlement mortality**
 Post-settlement mortality was independent of settlement density and ranged between 70 - 88% at seven months (Kaplan-Meier survival analysis: p > 0.05) (Figure 1).

- **Post-settlement growth and accuracy of 2D measurements**
 Growth as measured by changes in surface area (2D) and volume (3D) were both significant at seven months (t-test and Mann-Whitney U test: p < 0.05). Percentage growth obtained using the 2D methods was 85% while the 3D method yielded 190% growth.

Conclusion
- Density independent post-settlement mortality demonstrates that juveniles are not influenced by negative conspecific interactions and are more likely to be affected by inter-specific interactions and environmental factors such as sedimentation.

- High mortality during post-settlement (up to 88%) compared to “at settlement” (2%) supports a proposal that post-settlement processes play a vital role in adult population dynamics.

- Surface area is unsuitable as a proxy of size and growth estimates in sponges with massive morphologies contributing to underestimation of values.

Acknowledgements
We would like to thank Shane Askew from the Advanced Analytical Centre, JCU for training on the confocal microscope. This research was funded through an Australian Research Council linkage grant with Reef HQ (LP0990664).

References