Porphyins as self-destructive photocatalysts

Danilo Malaraa, Lone Hojb, Michael Oelgemöllerc, Kirsten Heimanna

aCollege of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
bAustralian Institute of Marine Science (AIMS) PMB 3, Townsville, QLD 4810, Australia
cCollege of Science, Technology and Engineering, James Cook University, Townsville, QLD 4811, Australia

Email: danilo.malara@my.jcu.edu.au; kirsten.heimann@jcu.edu.au

Introduction

- Microorganisms cause high mortality rates in aquaculture [1].
- Common treatments (antibiotics, vaccination) are inappropriate for use in hatcheries [2].
- Singlet oxygen (\(1\text{O}_2\)) treatment represents a promising and environmentally sustainable alternative for disinfection in hatcheries [1].
- Porphyrins are non-toxic photocatalysts, generating \(1\text{O}_2\) when exposed to visible light [1, 3] (Fig. 1a).

Aim

- This study investigates the “self-destructive” behaviour of two porphyrins in seawater. This desirable feature avoids costly removal of these photocatalysts at the end of the treatment.

Methods

- Cationic1 (H\textsubscript{2}TMPYP) and anionic2 (H\textsubscript{2}TPPS) dyes were dissolved in filtered seawater in concentrations of 200, 20, 2 and 0.2 \(\mu\text{M}\).
- Absorbance wavelength scans showed that 20 \(\mu\text{M}\) of either porphyrin gave optimal absorbance peak profiles (Fig 2).
- For photodegradation experiments, 2 mL of 20 \(\mu\text{M}\) porphyrin in seawater solution was added to each well of a 24 well plate.
- Well plates were exposed to 8 \(\times\) 8W fluorescent tubes (Lower Intensity, (LI), 63.87 \(\mu\text{mol}\text{m}^{-2}\text{s}^{-1}\)) or a 150W LED flood light (Higher Intensity, HI, 262.2 \(\mu\text{mol}\text{m}^{-2}\text{s}^{-1}\)) for 20 days (Fig. 1b).
- Absorbance was measured daily over a 20 days time course.
- Black and light control were conducted simultaneously.

Results

- Time-course experiments revealed complete photodegradation of both porphyrins after 12 and 18 days of exposure to LI (Fig 3a).
- Photodegradations induced by HI showed no measurable UV-Vis absorptions after 2 and 5 days for either porphyrins (Fig. 3b).
- The cationic porphyrin was found more photostable than its anionic counterpart under either irradiation conditions (LI and HI).

Discussion

- Previous studies identified a Lowest Observed Effect Concentration (LOEC) of 5\(\mu\text{M}\) for both porphyrins to kill bacteria via \(1\text{O}_2\) treatment depending on light conditions.
- Photobleaching naturally self-destructs these materials, thus avoiding their costly removal at the end of the treatment period.
- Self-destruction processes are slow enough to allow for efficient disinfection.

Conclusion

- Porphyrins are promising materials for disinfection applications.
- The different photostability of the porphyrins allows for time- and task-specific applications with potential treatment windows of 2 to 18 days depending on light conditions.

Acknowledgements

The authors thank James Cook University and AIMS@JCU for their financial support.

References:

![Figure 1](image1.png)

![Figure 2](image2.png)

![Figure 3](image3.png)