Sames cook UNIVERSITY AUSTRALIA Porphyrins as self-destructive photocatalysts Signatures cook UNIVERSITY

Danilo Malara^a, Lone Hoj^b, Michael Oelgemöller^c, Kirsten Heimann^a

^aCollege of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
 ^bAustralian Institute of Marine Science (AIMS) PMB 3, Townsville, QLD 4810, Australia
 ^cCollege of Science, Technology and Engineering, James Cook University, Townsville, QLD 4811, Australia
 Email: danilo.malara@my.jcu.edu.au; kirsten.heimann@jcu.edu.au

Introduction

- Microorganisms cause high mortality rates in aquaculture [1].
- Common treatments (antibiotics, vaccination) are inappropriate for use in hatcheries [2].
- Singlet oxygen (¹O₂) treatment represents a promising and environmentally sustainable alternative for disinfection in hatcheries [1].
 Porphyrins are non-toxic photocatalysts, generating ¹O₂ when exposed to visible light [1, 3] (Fig. 1a).

Aim

• This study investigates the "self-destructive" behaviour of two porphyrins in seawater. This desirable feature avoids costly removal of these photocatalysts at the end of the treatment.

Methods

- Cationic^I (H₂TMPYP) and anionic^{II} (H₂TPPS) dyes were dissolved in filtered seawater in concentrations of 200, 20, 2 and 0.2 μ M.
- Absorbance wavelength scans showed that 20 μ M of either porphyrin gave optimal absorbance peak profiles (Fig 2).
- For photodegradation experiments, 2 mL of 20 μ M porphyrin in seawater solution was added to each well of a 24 well plate.
- Well plates were exposed to 8×8W fluorescent tubes (Lower Intensity, (LI), 63.87 µmol*m⁻²*s⁻¹) or a 150W LED flood light (Higher Intensity, HI, 262.2 µmol*m⁻²*s⁻¹) for 20 days (Fig. 1b).
- Absorbance was measured daily over a 20 days time course.
- Black and light control were conducted simultaneously.

Figure 2: Anionic (a) and cationic (b) absorbance spectra at different concentrations (~200, 20, 2 and 0.2 µM)

Results

- Time-course experiments revealed complete photodegradation of both porphyrins after 12 and 18 days of exposure to LI (Fig 3a).
- Photodegradations induced by HI showed no measurable UV-Vis absorptions after 2 and 5 days for either porphyrins (Fig. 3b).
- The cationic porphyrin was found more photostable than its anionic counterpart under either irradiation conditions (LI and HI).

Figure 3: Porphyrins concentration in time course experiment and photo-induced degradation with LI (a) and HI (b) over 20 days. Error bars means Standard Errors (SE). R² is based on the Grade 3 polynomial fitting curve.

Discussion

- Previous studies identified a Lowest Observed Effect Concentration (LOEC) of 5µM for both porphyrins to kill bacteria via ¹O₂ treatment within 2-10 days [4].
- Photobleaching naturally self-destructs these materials, thus avoiding their costly removal at the end of the treatment period.
- Self-destruction processes are slow enough to allow for efficient disinfection.

Conclusion

Porphyrins are promising materials for disinfection applications.
The different photostability of the porphyrins allows for time- and task-specific applications with potential treatment windows of 2 to 18 days depending on light conditions.

Figure 1: (a) schematic representation of singlet oxygen production by a photosensitiser (PS). (b) light sources: 8 × 8W cool white fluorescent tubes (left) and 150W cool white LED flood light (right).

¹ 5,10,15,20 - Tetrakis (1-methyl-4-pyridinio) porphyrin tetra (p-toluenesulfonate)
 ^{II} 4,4',4",4" - (Porphine-5,10,15,20-tetrayl) tetrakis (benzenesulfonic acid) tetrasodium salt hydrate

References:

Acknowledgements

The authors thank James Cook University and AIMS@JCU for their financial support

- 1. Alves, E., et al., Bioluminescence and its application in the monitoring of antimicrobial photodynamic therapy. Applied Microbiology and Biotechnology, 2011. 92(6): p. 1115-1128.
- 2. Hall, M.R., et al., Palinurid lobster larval rearing for closed-cycle hatchery production, in Advances in Aquaculture Hatchery Technology, G. Allan and G. Burnell, Editors. 2013, Woodhead Publ Ltd, Hall Abington, Cambridge Cb1 6ah, Cambs, Uk. p. 289-328.
- 3. Almeida, A., et al., Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants. Marine Drugs, 2009. 7(3): p. 268-313.
- 4. Notdurft, C., Sustainable Water Management in Aquaculture Solar Degradation of Vibrio Species, Testing of Sterilisation Efficiency and Contamination Control. 2011, Beuth Hochschule für Technik: Berlin.